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SOME THEORETICAL ASPECTS OF THE LOT PLOT SAMPLING INSPECTION PLAN 

HT 

LINCOLN E. MOSES 

Introduction. 

Industrial sampling plans for the most part are of one of t«c types.. 

1. Attributes ..plans: Here a sample is taken and each item in the 

sample is adjudged defective or nondefective.(for example, is a 

rivet long enough. or will a bolt pass through this hole but not 

pass through this smaller hole?) If sufficiently few items in the 

sample are defective, the lot is accepted since the evidence in- 

dicates a small proportion of defective items in the lot. 

2.. Variables plansj Here a 3ample is taken and each iteiu in the sample 

is measured. (The question is, "How long is this rivet?," rather 

than "Is it long enough?") From the mean of the observations 

and some measure of product variability, such as the sample stand- 

ard. deviation, or range, or a known value of the true process 

standard deviation, a decision is made as to the fraction of 

defective items in the lot. Making this decision involves the 

assumption that the distribution of measurement in the lot is 

normal, 

2g Variables plans ordinarily require many fewer observations than attri- 

butes plans because they exploit the information about the shape of the 

& ' 
distribution. On the other hand if the distribution is net normal this may 

vitiate the decisions reached from a variables planj whereas, the decisions 

reached from an attributes plan are in no way disturbed. 
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Both types of sampling plans may be regarded as alternatives to 10055 

inspection. Where it is imperative to assure a very small fraction defective 

remaining in accepted lots, 100% inspection may be used. However, much 

experience indicates that 100$ inspection is often less than 10055 effective 

- that defective items, though inspected, may not be identified and re- 

moved.  Since this sort of condition arises largely from monotony and in- 

spector fatigue, it is often felt that for large lots a good sampling plan 

is a better recourse than 100$ inspection. In addition 100% inspection is 

ordinarily much more expensive than sampling inspection. 

During recent year3 there has been widespread use of a third sort of 

substitute for 100% inspection. This is th9 Lot Plot Flan, developed by 

Dorian Shainin, which is a sort, of modified variables plan. It has a novel 

feature however; it is intended to have the advantages of a variables plan 

without being sensitive to non-normality. In striving to achieve this ob- 

jective, much reliance is placed on the appearance of the sample histogram 

(the sample consists of 50 items). The Lot Plot Plan is epecifically pro- 

posed as a method for assuring smaller fraction defective in accepted lots, 

than can be achieved by 100% inspection - or even multiple 100% inspection 

LloJ. 

It is the purpose of this paper to consider theoretical aspects of 

the Lot Plcfc procedure. The reader is also referred to a paper by C. C. 

Craig [3J. 

Brief Description of Plan. 

The inspector draws a random sample of 50 items from the lot. He 

records ta& measurements in sets of five, at the same time plotting them 

pn a conveniently arranged specially prepared form. When all 50 have been 

. 
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1/ measured and recorded he has a histogram of from 7 to 16 intervals- 

(which facilitates quick calculation of x) and the data themselves recorded 

in consecutive sets of five (which facilitates the calculation of r^ - the 

average of the ranges of the 10 subsamples). At this stage the inspector 

has three things: 

1. The histogram (the Lot Plot) on which are shown the specification 

limits. 

2. x, the sample mean 

3. r, the average range. 

How the statistics are used in reaching a decision depends upon how 

the histogram looks. The histogram may appear to be one of several types 

listed by Shainin: 

a. Normal 

b. Ckewed 

c. Multimodal 

d. One sided (for concentricity parallelism, etc.) 

e. Flat topped 

f. Peaked 

g. Truncated 

h. With strays 

If the histogram looks normal then the "lot limits" are calculated as 

ULL - x-1.3? 

LLL " x-i.3r 

and the lot is accepted if both lot limits lie inside specification limits. 

After the first five observations have been drawn the inspector applies a 
rule of thumb given him in order to decide whether the interval of 
measurement is too coarse or too fine to result in such a number of in- 
tervals for the histogram. 

t^yjijftn^ti' ^•^'»wrt^^y-*»*'" • * 
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If a lot limit lies beyond a specification limit, then the fraction of the 

lot. lying beyond that limit is estimated (using a nonvenient chart) from 

the normal distribution, taking x for the mean and r for 2.32&tf"7 After 

the fraction defective is estimated and entered on the lot plot, the sntire 

2/ 
sheet is sent to a Salvage Review Board who decides disposition.-/ 

If instead of looking normal the histogram looks skewed, the inspector 

calculates the two lot limits differently.  He considers the mode as the 

origin and computes (JT the root-mean-square average of the observations 

greater than the mode (including half of the frequency at the modal cell) 

and sets the upper lot limit at mode + 3<5~n> similarly he constructs the 

/>. ^ 
lower limit at mode-3(T'T  where 0""T   is the rool-mean-square average of the 

Xj la 

observations below the modal cell, (including half of the frequency at the 

modal cell).  If both lot limits lie within the specification limits the 

lot is accepted.  Otherwise, the jroportion defective at each specification 

is estimated as before, but taking the mode for the mean and the appropriate 

one of CT*.. or <J~, for the standard deviation. 

If instead of looking normal the histogram looks multimodal, the in- 

spector calculates the let limits still differently. In this case he 

considers the two "outboard modes" and if there are sufficient cases 

beyond them he calculates separately a <J ..  at the upper one and a C% 

at the lower one and sets: 

ULL = largest mode+3<?~Tv 

LLL = smallest mode-3CTT 

If there are only a few cases lying beyond either or both of the 

s 
2/ It is to be observed that in some plants the sample standard deviation, 

s, is calculated and used for an estimate oj the process standard de- 
viation. In this case the lot limits are x±3s.  [1] 

r**- 
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outboard modes, he first draws some additional observations and then com- 

putes the lot limits. If one of the lot limits lies beyond a specification 

limit the percent defective there is estimated by taking the relevant one 

A\ A. 
of CTTT and 0"T and the appropriate mode as the standard deviation and mean, 

respectively, of a normal distribution. 

The other cases listed above carry specific instructions but will 

not be sketched here because: 

1. They are cases which arise less frequently in practice than 

the three above [41. 
I 

2. Description of these cases is not essential to an exposition of 

! the evaluative work being reported on here. I 
The following remarks are in order at this point 

1. If sample items lie outside the lot limits, the lot is not 
i      - 

regarded as "normal", but either as "long tailed" or as "with 
i 

i      • stray3." 

2. If a histogram looks normal and lies well within the specification 
i 

limits, the inspector may accept without caluculating any 

statistics at all. 

3. The inspector never rejects a lot. He refers it (via the 

executed Lot Plot form) to the Salvage Review Board (often 

j interdepartmental in composition). This board weighs the evi- 

! 
dence in the Lot Plot form and economic considerations such as 

production line needs, existing inventories, disassembly costs, 

i     *• etc., in arriving at a disposition such as screen, return to 

£' vendor, accept, scrap, remove some good items and rework others, 
(I ' 

etc. 

4. The apparent vagueness in such phrases as "looks normali; is a 
I 

! 
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real and genuine vagueness in the plan as published. In general, objecti^a 

criteria (except for (1) above) are not given,  It is thus entirely 

possible for two inspectors to arrive at different dispositions of the 

same lot from the same sample. 
- 

Nature of a Full Evaluation of the Plan. 

It has already been said that the plan is intended to be applicable 

regardless of the distribution of the lot. That is, for any kind of lot 

- or at least for any kind of lot which might "reasonably" arise in industry 

- the plan is intended to give the (essentially) same tight operating 

j 
In evaluating the plan it is thus necessary to consider how it works 

! 
| where the lot may have any one of various sorts of distributions. Since 
i 

only a sample is inspected, a lot which is actually, say, skewed will 
j 
< sometimes give a histogram which appears to be normal, sometimes skewed, 

sometimes flat-topped, sometimes bimodal, etc. Then after a certain type 

of analysis is decided upon (from looking at the histogram) the sample 

may give lot limits leading to acceptance, or it may not; and the 

probability of acceptance presumably should be different for the same 

lot depending on what form of analysis is used. 

Thus, if f (^ ,/\oj • - A. ) is a given distribution type with parameters 

A-, JA5 , ...A. , a full evaluation for this distribution type would 

require determining: 

Pf (*K| A,, A2,-.»A, ). The probability that the histogram would 

"look like one of type°C". 

Lf ( A -, , A?> •• 'AJ_|°0 the probability of acceptance (as a function 

of the parameters), given that the histogram looked like one of 

type°C 

1 
I § 

if 
fc ' S'-- 

: 
I . • 
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It would then be possible to obtain the overall probability of acceptance 

for the distribution type f (as a function of the parameters) by the 

equation. 

Lf(AlA2...Ak- f iJf(A1,A2,„..,Afc|o<.)Pf(o<kj^1,A2,...,/\) 

when the summation is overall lot plot "types." 

There would then remain the question, "Is L_(A, ,A?,. • <-A. ) actually 

only a function of p, the fraction defective?" If so^ it could be 

written as L_(p). 

If this sort of investigation were then done for many different dis- 

tribution types, a very complete account of the plan's properties under 

the circumstances for which it was designed would be obtained. 

Carrying through such a complete study is at best horrific in 

principle. In this case it is also actually impossible because of the 

fact that the plan gives no objective criteria for concluding that a lot 

plot "looks skew", etc. 

Necessarily then this paper will give a more modest evaluation than 

a complete analysis would provide. 

A Counter Example. 

The Lot Plot Plan cannot achieve the objective of giving a tight C. C. 

for every distribution. In fact it is easy to show that for certain 

kinds of distributions it must behave almost exactly like an attribute 

plan calling for 50 observations and rejection if one or more defective 

items are found. Consider a lot with the following composition: it 

contains N items whose distribution is centered half way between the two 

specifications, the standard deviation is so small that the distance 

between the specification limits is many standard deviations (such as 10 

or 20), and its shape is as nearly normal as is possible for a discrete 

•-t*!|»ft'4»Bni*J<»tfJ«»"fc'T«>-»*'^>»--~'ii-- ' —    "'  '- •—-"W*~-     '   * -. .--•"».laiuinMillKiii  y    - •» .. 
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distribution: in addition it contains k "mavericks" - items which are 

outside the specification limits in any way whatever. Now consider the 

operating characteristic.  Whenever the sample of 50 items includes none 

of the k mavericks, the Lot Plot will lead to acceptance. Whenever the 

sample contains one or more of the k items the Lot Plot will say "refer 

to salvage". The plan will thus behave exactly like the attributes 

acceptance plan mentioned above. 

A stronger statement can be made. It is impossible to construct 

any plan, using 50 observations, which has both of the following pro- 

perties; 

a. There exist lots of such high quality that the plan is nearly 

sure to accept them. 

b. The plan is materially tighter than a 50-observation attribute 

plan for every kind of lot distribution. 

A formal statement and proof is as follows: 

Any acceptance plan which requires n observations and has the 

property that for every N >n and every 6 > 0 there exist lots 

(of "high quality") such that the probability of acceptance, A 

exceeds l-€, also has the property that for any given p there 

exist lots with fraction defective greater than p for which 

A > A. - £  where A, is the probability of acceptance using an 

attribute plan with sample size r. and acceptance number zero. 

Proof: 

Let L be a lot of size N >-n such that A (L) > l-€. 
P 

Consider the lot L'(K) formed by adding K defectives to L 

i 

where K is chosen to ensure TJ-T > p' 

*&#«agjfr-« vv •-*•**-' »<•_•> •Wt-* &WM<£2S    ;-*-.•<•.-»..-'_<-'«^i**»a*f-.-"* 
•  .'    • * •- t3 ' -•'     I        x 
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Then 

A_(^')  j>   Prob) Sample consists only of items ( 
* / from L and is accepted \ 

•    Prob f n observations from Lj  A (L) 

^>(ll(l-€) 
(Nnk) 

-£ r AA(L')-€ 

The nature of the counter example deserves some consideration 

from the practical point of view. It surely indicates that where a 

small fraction of strays constitutes a serious problem, the Lot Plot 

Plan cannot afford good protection. On the other hand it leaves open 

the question how should it behave in situations where we have normality, 

or where the ncnnormality is not a matter of strays? 

1 

i • 

The Use of a 50 Observation Histogram to Detect Nonnormality. 

The most distinctive feature of the plan is the use of the histogram 

to warn the user when the normality assumption is invalid and to cause 

him to employ special techniques. Thus it is natural to enquire as to the 

efficacy of the plan in this respect, 

Craig [3] reports the results of some sampling experiments in which he 

forcefully raises the question what can one learn about the shape of a 

distribution from a histogram based on 50 observations? Otner sampling 

experiments have been done [U'J  again casting severe doubt on the 

possibility of greatly profiting from a 50-observation histogram. Here 

a more theoretical view will be taken. 

Because the Plan is very vague as to what sorts of loL plots ars to 

be regarded as sxew, what sorts as normal, what sorts as bimodal, etc., 

it is hardly possible to answer the question "How reliably will the Plan 

protect against nonnormality?" instead we will ask how well can any 

L r        • ;n • » | 
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procedure using t>0  observations in grouped frequencies identify ncn-normality? 

Since it  is the aim of the Plan to give protection against any kind 

of departure from non-normality it is fair to focus our attention on 

"omnibus" or "shotgun" tests. We know of one such test, whose power we 

can compute, and which has the encouraging property of being a likelihood 

ratio test (for grouped frequencies against the class of all alternatives). 

This test is the/\  test. Accordingly we computed the power of the /\ 

test against various non-normal alternatives. See Figures I, II, III, IV. 

This was done in the following way. The null hypothesis specified a unit 

normal distribution; the cells for the /\ test were those given by the 

deciles of the unit normal (this should give a more sensitive 10-cell test 

than equal length cells according to results of Harm and Wald [6]). 

Under the null hypothesis the expected cell frequencies are all 5« For 

various competing distributions having mean zero and unit variance the 

cell expectations were evaluated. From these the power of the 10-cell 

/\  test could be evaluated using methods given by Patnaik [7J« The 

results are shown in table 1. 

Another approach to the problem was also taken. The same competitors 

and cell intervals were used but the test was allowed in each case to be 

tailor made for maximum power against the alternative. This is accomplished 

by using the Neyman-Pearson criterion for testing a simple hypothesis against 

a simple alternative. The hypothesis is that the chosen intervals have 

the probabilities Jp.t specified by the normal distribution; the alternative 

C  O is that the chosen intervals have the probabilities; JP^I specified by the 

particular alternative distribution. The Neyman-Pearson criterion then 

gives the optimum test of the hypothesis against the alternative; optimum 

J**N 
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in the sense that no more sensitive test can possibly be constructed. 

Let the observed frequencies be 

n± i«l,.,.10. 

The Neyman-Pearson test is to reject for sufficiently small values of 

10 /. V*i    10     , . ^ 

i-1 V xf i-1     x 

"i 

pi Or if we define w.*= log —7- we reject for sufficiently large values of 

10 

2>iwi 
i-1 

Since the n. have a symmetric multinomial distribution under the null 

hypothesis we should expect the distribution of the weighted sum to 

be fairly well approximated by tho normal distribution with 

_. 
mean -    50i.w.p. 

2 o 
variance = 50£w.  p.  - 50(2Lw. p.) 

Thus the test with significance level OCbecomes, Reject if: 

i-1 

(1-wo 
when we define z    by: 

Mt)    L2 

t. T  -€50 
e-Tkf «-t72- 

Under the alternative hypothesis, x p.i , the statistic  x n.w. will have 
;    - C XJ i-i x i H 

10 

*  The power of this test for any given significance level would necessarily 
•£• exceed that of the Lot Plot test of normality if the Lot Plot used the 

same choice of cell intervals. 

W.HWK<»4gfaa-»-^-t«w.»v.;.-.-t-, -.t,\>,..,t ..w~». • ..,; - .•_-. , ->,;••*. v.^.-'.. •  ...• -• >'• -  ,-v.-*«t>--———     ,- .••-- 
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mean = 5d£w. p.       find 
1*1 

variance « 50rp'w.fc - 50(Z"p^w. )* 

again using a normal approximation, the power of the test which is: 

i 

may be approximated as: 

i" 
X   1 rl 1 

£'. . 

s ! 

where z has a unit normal distribution. 

The power of this test against the same alternative distributions is 

shown in table 2. Admittedly study of the values in tables 1 and 2 

does not tell us directly how the Lot Plot "test of normality" will be- 

have for these distributions.   However, both of the tests considered do 

enjoy certain optimum properties, and there is every reason to suppose 

that the combination of an inspector and a Lot Plot diagram will yield a 

test of normality less sensitive than the second of these and probably 

less sensitive than either. If this be granted then, from a study of 

either table 1 or 2 we reach two conclusions. 

1. The Lot Plot Plan., relying on a 50-cbservation histogram to 

identify non-normality, cannot be relied upon to protect from 

distributions as nearly normal as these. 

2. Distributions as nearly normal, as these will very often be re- 

garded as normal, and it is worthwhile to see what sorts of 

decisions will be made when the normal analysis is applied to them. 

•   -     • '.. . 
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Sffects of using the "Normal Analysis." 

A. General remarks. 

We now concern ourselves with examining the results of an acceptance 

procedure which accepts if both 

x • 3 ^  and * " 3 §2 

lie between the specification limits, and which otherwise rejects. Since 

the Lot Plot is sometimes used with the sample standard deviation rather 

r/ ~~ than  d2 for the estimate of vj , the problem will also be investigated 

for that case. The behaviour of these procedures will be examined for the 

normal distribution and a few members of four types of non-normal distri- 

butions (which first appeared in the last section). These four types all 

share the property that the normal distribution is a limiting case. As the 

parameter in either the t orT distribution increases, the shape of the 

distribution increasingly resembles the normal; similarly, as the two 

parameters of the symmetric Beta distribution increase it goes to the 

normal. Finally, as the parameters si.  and J*\ ~  tend to zero in the mixed 

2     2 normal with <5~,  • C  , the distribution tends to the normal. In 

addition, all of these distributions except for the extreme mixed normal 

are "bell-shaped", and all of them except for the Gamma distributions 

are synaaetric. We have already seen that if indeed the distribution cf 

the lot is one of these types there is a great probability that it will 

be subjected to the normal analysis. 

In a certain sense —' it can be said that the plan "aims" to accept 

-'     If x * 3s be used, as the sample size becomes large the probability 
tends to one that the lot will be accepted or rejected as JX +30~ 
both lie (strictly) within the specification or one at least lies 
(strictly) outside. 

. .. 
' *: 
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if the points^* 3o"and^{- 3C both lie within the specifications, and 

otherwise to reject.  Now it is clear that "3-sigman criteria mean very- 

different things for different distributions.  Table 3 displays the 

probability lying beyond./^+ 36 and >A^ - 3fl"'for each of several non-normal 

distributions. From perusal of these values we would guess that as 

x*3s or i&i-T? were successful in approximating^ *3C >  so also would 

lots of identical quality tend to be accepted with widely different pro- 

babilities, depending upon the shape of the distribution. 

I  s 

b.  The case of normally distributed product. 

'iVhere the product is normally distributed the joint distribution 

of x, s is of. course exactly known and numerical integration enables ihe 

probability of acceptance to be evaluated for any relation of-X( and ^~" 

to the specification limits "-and L_ . As is well known [11j, the probability 

depends not only on p, the fraction defective, but on how the fraction 

defective is divided; if /2 lies beyond each specification, then the 

probability of acceptance is greater than if ail of it lies beyond one 

specification.  (Variables plans exist for which the O.C . effectively 

depends on p alone [2,9]; the Lot Plot Plan is inferior to them in this 

regard). Figure V shows the O.C. as a function of p for various relations 

of>(\to the specification limits.. 

If x and r be used, then the exact distribution of r is not available. 

However, an approximation due to Patnaik [8] is known to be excellent. 

Further x and r are independently distributed in the normal case. Thus 

the O.C. can be obtained by numerical integration. 

In either of the above cases another method of approximately evaluating 

the 0 JZ . is available. We know that x is exactly normally distributed; r, 

being the averaro of ten independent ranges, may be considered approximately 

L 
"I  ! 
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normally distributed, and n  the sample standard deviation is asymptotically 

normally distributed- Thus we may consider taking x+3s and x-3s to have 

a bivariate normal distribution. Similarly we may consider taking xjtl.3r 

to have a bivariate normal distribution. Table 4 shows the values of p 

for which the probability of acceptance (from norcal lots) equals .95, 

.90, .10, .05 as calculated from the bivariate normal approximation, and 

by the exact method for s, by Patnaik's approximation for r. The agreement 

is seen to be good. 

c. Methods used for case of non-normal distributions. 

When product is not normally distributed the exact distributions 

of x, s and r are all unknown for the distributions considered here. This 

means that either approximation to these distributions or empirical 

sampling must be used to evaluate the probability that the lot limits 

(using either s or r) will lie inside the specification limits. The 

course chosen in this investigation was to take the lot limits as having 

bivariate normal distribution. It has already been seen that this approxi- 

ation is excellent for the normal, and it can fairly be hoped that it 

will not lead to grossly misleading results for these distributions which 

are "nearly" normal. 

To apply the bivariate normal approximation it is necessary to obtain 

rr2 
its parameters.  The mean and variance of x are of courseXfand   icFt  when 

M,,  andC'" are the mean and variance respectively of the distribution 

postulated for the lot. The mean and variance of r,., the range of fiTe 

observations,were obtained by numerical evaluation on the CPC of the 

integral expressions (given in [5, P-233]) which are respectively: 

.' > 
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E(r5) - \    [l-(l-F(u))5-(F(u))5Jdu 

E(r5)
2 =/(f[F(u) - F(v)]5 - [I -F(v)f  - [F(u)j5 «• lfdudv 

U5V 

In these expressions F(u) is the cumulative distribution evaluated at u. 

Values of E( r£)  and <y\ -£)  for distributions are given in table 5. It 

i? interesting to observe how stable is the ratio E (3) from distribution 
to distribution. 

In the case of symmetric distributions the correlation between the 

range and the sample mean is zero since they are, after translation, even 

and odd functions, respectively.  For the Gamma distributions the co- 

variance between the mean and range of five observations was obtained by 

numerical evaluation of the following integral expression: 

oo 
iGLr.) - (»Pg)(2p»l>l . (6op+72) (  F(x)(l-F(x))xf2 5 5      22p+2plp! Ja 

dx 

when the Gamma density and cumulative function are, respectively: 

and 

f (x) = i, e"V 

F(x) -i-. j   e-Vdt. 

In terms of these parameters of the joint distribution of x^„ and r,., the 

bivariate normal approximation to the joint distribution of the lot 

limits is to take: 

! - 

x$Q + 1.3r5 - Jj  - 1.3E(r5) 

/ 
<3_ + i Ao ^£g + IA  cov(C r ) 
50  J"Dy  10   10 cov^x5r5^ 

and 

i 
<• '• ' ••,  •   '  ••' • 
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U 

x.r - 1.3?, -A
+ 1.3E(rK) 

as having a bivariate normal distribution with means zero, variances one, 

and correlation coefficients 

2 ST-2" 
<T   - 1.69    ^r 
50 10 

y^S+x-69 §v vs00* x5r
5) 

Ml the expressions under the square root signs simplify somewhat for the 

symmetric distributions. 

A similar approximation was applied to the problem when the lot limits are 

taken as x+3s and x-3s. Application of standard methods [5. ch.9] yields 

the following results: 

E(x) = Ak 

COV(x,s) = —*L 
2N^ 

var x •  /N 

var 3 = -a 5 
4(n-l)<T 

In terms of these parameters (approximate in the cases involving s) the 

bivariate normal approximation to the joint distribution of the lot limits 

is to take: 

4005" 

J 
T~~l2 

50   4   (49)0.2     50(T 

• , •   •   - -   *      - 

< 
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and 

v« 
x,p - 3s -J1+ 36 _ ^50 KX     400        '••-"•' 

SL2*l   U^aL   - Hk. 
yj   50 4 49CT-1- 50cT 

as having a bivariate normal distribution with means  zero and variances one, 

and correlation coefficient: 

i 

: 

• 

• 
• 

i 

• • 

O u'v' pG 4.49 gJ"8- 

/paf ; ^-(M^Z]PAQ2 

Again there is simplification for the symmetric distributions since the 

(3 
third central moment, yAJ    is then zero. 

d.  Results for non-normal distributions. 

The distribution theory whose development has just been sketched, 

enables one to evaluate the probability that the lot limits will lie 

between any given lower and upper specification limits, L and U respectively. 

Since for any given distribution the fraction defective p is defined as the 

probability lying outside the interval L to U we can find both the value of 

p and the probability of acceptance associated with any pair of specification 

limits. 

In the normal case it was pointed out that the probability of acceptance 

is not a function of p alone, but also of how p, that fraction defective, is 

divided between the two ends of the distribution. In general we should 

expect this condition to obtain for other distributions as well. Therefore, 

in the case of each of the symmetric non-normal distributions taken as 

illustrative examples in this study two of the infinitely many divisions 

L 
• •• 

•„ 

; 
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of r. were considered:  equal division of p between the two ends, and all at 

one end.  In the case of the non-symmetric distributions there were three 

cases investigated:  equal division of p, all at the left end, all at the 

right end. 

Table 6 presents the result.- obtained.  The values of p leading to 

probability of acceptance (if the "normal analysis" is always used; 

equal .9 and .1 are shown there for several distributions, for symmetric 

and one-sided Hivision of p, and for both "range" and "standard deviation" 

lot limits. 

Study of the figures in this table indicates several things; 

Use of range or standard deviation leads  to nearly identical 

results. 

The plan is extremely "tight" for the normal distribution. 

The plan is far tighter for some others of these distributions (for 

example the B(3.3) distribution lies entirely between U and L (p=0) 

and still the probability of acceptance is less than .1). 

The plan is very much less tight for some distributions (such as the 

tor the i with all the fraction defective in the upper tail). 

Skewness results in a violently strong dependence of L(p) upon the division 

of the fraction defective between the tails. 

In considering the probability that the lot limits lie between the 

specification limits as a function of £ we find a great diversity, even 

restricting ourselves to the symmetric distributions. Instead we may 

examine the probability that the lot limits lie between the specification 

5/ 
That is, the probability that the lot limits lie between U and L. 

1 I 

i :   \ 

t 
'•••-    " 

• .      . 

•-•-•-•.•  . , 
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limits as a function of how wide apart they are (in tei-ics of the lot 

standard deviation). This is done in table 7. Here we see a rather 

surprising degree of uniformity. All these O.C.'s could easily be plotted 

on the same chart j in fact their $0% points all lie betwee .95 

6C- 

6CT 
U-L and 

1.00 
U-L* 

This observation together with a remark made much earlier helps to make 

sense of the behavior of the plan. We have just seen that the probability 

of obtaining lot limits between the specification limits depends upon the 

distance between the specification limits r~. in much the same way for 

all these "nearly normal" distributions. On the other hand, we earlier 

saw thatyU *3<3~  limits have greatly different values of p associated with 

them.  From these two facts we could predict what was shown in table 6, 

that the behavior of the plan in terms of the proportion defective depends 

strongly upon the type of distribution. 

e. Estimation. 

IVhen the Lot Plot looks normal, but the lot limits do not both lie 

between the specification limits the lot is referred to salvage with an 

estimate of the fraction defective beyond each limit- These extimates are: 

*   i r°° -^ -tV2   ,x       A * dt and 

L-x 

P- '—_ I    or    e dt 
/2TT 

<r 
v. — oo 

where <5"is either s or /d2. 

The question naturally arises, what properties have these estimates? 

The answer would seem to be that for distributions, such as the t, with 

much probability in the tails, the estimates above will tend to be under- 

estimates, and for distributions with little in the tails (such as the Beta) 

. 
-.' •. -    
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the estimates will tend r.o be overestimates.  For example we see from 

table 6 that if the distribution of product is B(3,3) with actually zero 

fraction defective we may still accept with probability less than ,1; 

the case shown in the table is for the specification limits at the end3 

of the (finite) range of the distribution. In such a case whenever we 

reject we estimate some positive value for pw or for p., of for both; 

whenever the lot is accepted the estimate for both is zero. Clearly 

the expected value of p,,+ Pr exceeds zero, the actual f racti ,-n defective. 

Similar reasoning confirms the statement made for long tailed distributions 

such as the t.  The simple fact would seem to be that though one can 

estimate^ and(X*with fair success for many distributions, since identical 

pairs of values for>/ and 0" denote greatly different probabilities in the 

tails for different distributions, we cannot hope to estimate these 

probabilities with uniform success by always pretending the distribution 

is normal. 

Non Normal analysis; 

Although, as we have seen, for non-normal distributions of our illus- 

trative types the "normal analysis" will often - cr indeed, usually - be 

used, it is profitable to investigate what will be the effects of another 

type of analysis when used. 

In all, about II different sorts of analysis are distinguished in the 

plan. Only two of these, besides the normal analysis, receive attention 

in this study.  These are the "skew"and multimodal cases. Since the special 

procedures in both these eases depend upon the mode it is very difficult 

to make any study of sample behavior; little if anything is known about the 

sampling distribution of the mode. However, we can again "look at the 

problem in the parameters." If the inspector knew the lot was skewed(or 
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multiniodal) knew the mode^), and knew the true values of #"".. and v~*T, 

then how would lots of various quality fare under the rule(s) which set 

the lot limits at 

mode - 3jTT and mode + 3<y"IT 

for skewed lots, or 

smallest mode - 30%  and largest mode • 3tf"TI 

for multimcdal lots? Table 8 shows that the rule - if the parameters 

were known would lead to very different results depending upon what distri- 

bution, or which end of the distribution, is being considered. 

It can certainly be said that there are grounds for doubting that the 

special rules for these two cases, at leant, will go far toward making 

the operating characteristics of the plan independent of the distribution 

of the lot. 

Summary and discussion. 

The results can be summarized as follows.- 

1. Tne lot plot plan fails - as must any 50-observation plan - in 

its objective of being uniformly tight regardless of lot distri- 

bution. 

2. The $0  observation histogram will usually judge to be normal 

lots whith in fact have fraction in their tails appreciably larger, 

or appreciably smaller than has the normal. 

3. The probability that lot limits will lie between the specification 

limits depends upon the distance (in standard deviation units) 

between the specification limits in a way which is not strongly 

dependent upon the lot distribution} but (almost as a result) 

the probability of acceptance depends very differently upon the 

- •• . • •• ~. 
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fraction defective for different distributions.  (That value of the 

fraction defective for which the probability of acceptance is .9 

varies for cases considered between 0 (for B(3>3)) and .006 (for Lr)j 

fractions defective with 10$ probability of acceptance range from 
' 

0 (for B(3,3)) to .045 (for attributes plan n=50 c=0). 

4. The procedures for estimating fraction defective will lead to sys- 

tematic overestimates for some distributions, systematic under- 

estimates for others. 

5. The procedure for dealing with non-normal distribution are question- 

able 

Since many of th«s« conclusions apply entii'ely or in so:;.e degree to any 

variables plan it is fair to ask how does the lot plot ; Ian compare with 

other variables plans? 

It is clear that when ail lots are normal, existing plans are superior 

for several reasons.  The lot plot procedure will unfortunately from time 

to time lead to treating a sample as coming from some other kind of distri- 

bution - say bimodal; existing variables plans will routinely treat all 

samples by those methods which are for the normal distribution the optimum 

ones.  Further,, plans which gxve one probability of acceptance for each 

fraction defective regardless of ho;/ it is divided between the two ends of 

the distribution are preferable on those grounds alone. 

If lots are not normal then either lot plot or other existing variables 

plans may behave in strange ways. When the user requires "iron-clad pro- 

tection" regardless of the lot distribution an attributes plan is needed. 
•,:.... j 

Finally, there is a great inflexibility in approaching every acceptance 
• - 

sampling problem with the same decision procedure - "Take 50 observations 

j at random, and.... ." Different problems may legitimately call for different 

i 

: 

i 
} 

•     . 

•• 
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i 
procedures.  This option is not a part oi the Lot Plot flan as it is of 

Mil Standard lGJa, or NavOrd 30 or other standard plans which give choice 

of AQL and sample size. 

Despite the various shortcomings of the plan which have received 

emphasis here, it has undoubtedly been successful in many installations. 

What features of the plan may have contributed to its success? There is 

no doubt that the plan has a very definite psychological appeal arising 

from literally "seeing a picture" of the sample.  The provision for always 

taking the same size sample is administratively (and psychologically) con- 

venient, however inadequate it may be from some points cf view^ 

Tf lots are usually normal and the user actually needs a very tight 

plan it is not a bad approximation to existing good unknown standard devi- 

ation plans, and the usual benefits of '.veil chosen variables plans will 

largely accrue to the Lot Plot user under these circumstances. In cases 

i 
of gross bimoriality, for example, the hi.stogram will give definitely useful 

information about the process which generated the lot. 

Finally, the provision that though an inspector may accept the lot 

it requires the salvage review board to dispose of one in any other way 

should have important administrative advantages in many settings: economic 
• 

factors will tend to be systematically weighed at the time of dispositxon 

of the iotj if the salvage review board contains representation from the 

departments which (in addition to inspection) are concerned, then, fewer 

dispositions of lots should result in difficulties such as production 

. I . flow problems. 

. • . - 
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Table 1. 

X2 
Power of /\ ' test  against various non-normal alternatives. 

Distribution 

Level of significance 

.05 .25 

s .097 .358 

*8 
.062 .288 

*13 
.053 .260 

(}<3,3) .062 .284 

0(10,10) .051 • 253 

P(3) .210 .533 

r(8) .097 .357 

P(15) .072 .307 

MH*(|;1,1;|,-|) .050 .250 

MN(|;i,l;l,-D .064 .288 

«(|n,i»|;4) ,219 .546 

Mixed Normal  (p; C^, <T^; ^ 1> ^ 2)j 

density function is 

(1-D^ 
O IV 2TT 6-2j2Tf 

~/r2 

t 

'-. •••- 

r   .. 

t 

,-.- • ---     •   : 

x > t , 
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Table ?. 

Power of Neyman-Pearscn Test of 

Normality aguiist Various  Alternatives. 

• 

•• 

Distribution 

Level of significance 

.05 .25 

s .310 .689 

H .153 .483 

*13 
.098 .376 

(3(3,3) .160 .489 

p(io,io) .075 .319 

P(3) .605 .899 

T(8) .312 .685 

r(15) .210 .565 

¥H(|jl,lji,-|) .058 • 273 

MN(|;I,lji,-l) .167 .505 

MN(|jl,l;f,-§> .627 o°12 

V . 
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Table 3. 

Probability lyinR beyond (|H.-3C* |4+30") for various distributions. 

Distribution^ 

Normal 

H3 

£(3,3) 

p(io,io) 

p(3) 

T(8) 

T(15) 

MN(|jl,ijl*-l) 

iJN(|jl,lj|.-|> 

Probability 

.002? 

.0117 

.0085 

.0062 

0. 

.0009 
s 

( 0„     below 

\  .0103 above 

.0006 

.0000 

i 

-'- % 

!   1 
I 
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Values cf E(—«•) and 
0~ 

-• 

• 

V 

£• 1 

Distribution 

ff (._2.)  for various 
C 

*8 

h3 
too 

(3(3,3) 

(3(io,io) 
P(oo.oo) 

ro) 
r(8) 
ras) 
r (°°) 

«Nvo>   >   '^2*"""2 

M(|;isi;i,-D 

UN(|;l,l;|r|) 

Normal 

2.29378 

2.31067 

2.32593 

2.30940 

2.32105 

2.33120 

2.32593 

2.25928 

2..29588 

2,30895 

2.32593 

2.31450 

2.33028 

2.32751 

2.32593 

distributions, 

<r& 
1.08931 

0.98788 

0.93279 

0.86409 

.61721 

.79568 

,82743 

,86/X'9 

.96704 

.91209 

.89157 

.86^09 

.68094 

.77979 

.85529 

,86409 
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Table 8. 

Probability above Upper Ecde *  3o~ U 

and below Lower mode - 3cTifor various distributions, 

Distribution Probability above Probability below 

TO) .0050 0. 

P (5) .0036 .00005 

P(8) .0030 .00023 

im*(iji,i5|,-|) .00067 .0006? 

*UN(|jl,l;}{ ,-p) is  unimodal foru ^ 1. 
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